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Introduction
STEM, the intersection of science, technology, engineering, and mathematics, emphasizes a 
multidisciplinary approach to solving problems (DeCoito, 2014). As the U.S. STEM workforce 
has innovated to solve problems, it has contributed to improvements in U.S. living standards, 
economic prosperity, and global competitiveness. The STEM workforce, consisting of a wide 
variety of occupations across industries (Israel et al., 2015), has grown at more than four times 
the rate of total employment (Hossain & Robinson, 2012). According to the U.S. Bureau of Labor 
Statistics (2017), there were already nearly 8.6 million STEM jobs in May 2015, and that trend 
has continued to grow. Computer-related jobs experienced the largest gains among the STEM 
occupations, making up nearly 45 percent of STEM employment. As the world becomes more 
technologically developed, employment in computer-related occupations is projected to increase. 

STEM education, particularly computer-science education, is fundamental to preparing the next 
generation of skilled workers. Computer-science education is well established at the postsecondary 
level (Bottoms & Sundell, 2016), but there are persisting barriers that make it difficult to meet the 
rising workforce demand. The current pipeline of students pursuing STEM professions is thought 
to be inadequate (Hossain & Robinson, 2012). Additionally, according to the Pew Research Center 
(2021), the higher-education pipeline suggests that lack of diversity is a persistent issue, especially 
in fields such as computing. Black and Hispanic degree recipients continue to be underrepresented. 
Women are underrepresented among graduates in computer science. These underrepresented 
groups also earn less compared to their counterparts in the STEM workforce. Broadening participation 
in STEM is necessary to foster innovative capacity and build a robust workforce that can effectively 
utilize technology in global applications (NSB, 2021). 

This urgency to prepare today’s students to become tomorrow’s creators and innovators of technology 
has resulted in an increased pressure to expand access to computer science across the K–12 
curriculum (Yadav et al., 2016). As more U.S. states move toward requiring computer science in 
Grades K–8 and offering it as an elective in Grades 9–12, it is estimated that nearly every child in 
the United States will take computer-science classes in the next decade (Tissenbaum & Ottenbreit-
Leftwich, 2020). Although this rapid integration of computer science in the K–12 system is a step in 
the right direction, it is not without challenges. 

This urgency to prepare today’s students to become 
tomorrow’s creators and innovators of technology has 
resulted in an increased pressure to expand access to 

computer science across the K–12 curriculum 
(Yadav et al., 2016)
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Access to computer-science content is only part of the solution. Student awareness, exposure, 
and interest in computer science are also essential. There is a concern that inadequate exposure 
to STEM in earlier grades will impact students’ course choices in high school, and subsequently in 
their postsecondary and career decisions (DeCoito, 2014). There is a low level of interest among 
middle schoolers for participating in STEM-related career academics when compared to courses 
in other subject areas (Collins & Jones Roberson, 2020; Hossain & Robinson, 2012). In high school, 
participation in Advanced Placement Computer Science courses is low overall, and dramatically 
lower among Blacks and Hispanics (Wang & Moghadam, 2017). Alternatively, Lee (2015) found that 
students who took more units in computer science were significantly more likely to choose STEM 
majors at the postsecondary level. This research indicates that enhancing the quality of computer-
science education, and motivating students to pursue STEM education and career choices 
throughout their education, is important for developing a robust pipeline of diverse STEM career 
aspirants in college, who will be prepared with skills the 21st century demands.

Teachers encounter challenges teaching computer science. First, teachers need additional training 
and resources to successfully integrate computer-science instruction (Yadav et al., 2016). Second, 
there are not enough teachers prepared to teach computing, due to teacher certification and 
training issues (Computer Science Teachers Association [CSTA], 2013). Third, although educators 
recognize the conceptual links between the various domains of STEM knowledge, some find it 
a challenge to meaningfully integrate STEM content into their instruction (Thomasian, 2011). For 
example, computer science is sometimes confused with other disciplines such as educational 
technology, computer or digital literacy, information- technology (IT) fluency, and computational 
literacy (Bottoms & Sundell, 2016). 
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The main goal of STEM education is to help students become proficient in STEM content while 
developing 21st-century skills such as critical thinking, problem solving, creativity, and collaboration 
(DeCoito, 2012). Computer science, a component of STEM, is “the study of computers and 
algorithmic processes, including their principles, their hardware and software designs, their 
applications and their impact on society” (CSTA, 2011, p. 1), but it offers much more than simply 
teaching students to build computers, write code, and manage data. In the process of learning 
subject-matter content, students develop computational thinking, which encompasses skills 
such as problem solving, creative thinking, confidence, and persistence (Bottoms & Sundell, 
2016; Burbaite et al., 2018). These valuable qualities are highly transferable, empowering students 
to succeed in school, and advance efficiency and productivity in every discipline, industry, and 
profession as students progress in their chosen careers and contribute to the labor market. This 
paper explores essential STEM skills and describes how these skills are integral to computer-
science education. Specially, in Section 1, the Four Cs of STEM are defined, with discussions of 
computational thinking and creative problem solving as foundational processes for computer-
science instruction. Section 2 describes the integration of computational thinking and creative 
problem solving with instructional approaches for K–12 educators.  

The main goal of STEM education is to help students 
become proficient in STEM content while developing 21st-

century skills such as critical thinking, problem solving, 
creativity, and collaboration 

(DeCoito, 2012)
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Part 1

The Four Cs Of STEM: 21st-Century Dispositions

As discussed in the introduction, the number of jobs requiring computer-science skills has grown 
significantly, and is projected to continue growing as technological advances are rapidly changing 
how we interact with our world. Workforce skills have changed dramatically in the 21st century. 
Jobs with more “routine” work have decreased, and have been replaced with jobs that require 
adaptability for nonroutine work and analytic and interactive communication skills (NEA, n.d.). 
In response to changes in demand for skilled labor, the National Education Association (n.d.) 
identified the Four Cs of STEM as essential for all students to acquire. Specifically, the Four Cs 
include: critical thinking, communication, collaboration, and creativity (defined in Table 1). These 
skills are critical for STEM-related jobs, and critical thinking and creativity are particularly applicable 
to computer-science education. 

Table 1: Four Cs of STEM

Four Cs Definition Importance
Critical Thinking Critical thinking involves reasoning effectively, 

using systems thinking, making judgments 

and decisions, and solving problems.

Learning requires critical thinking. Critical 

thinking leads students to develop other skills, 

such as improved thought processing and 

higher levels of concentration. 

Communication Communication is the ability to articulate 

thoughts, listen and extract meaning, and 

interact in diverse environments.

Students must be able to clearly 

communicate, and to effectively analyze and 

process various forms of communication for 

success in school and careers. 

Collaboration Collaboration is the ability to work effectively 

with others to achieve common goals.

Considering the complexity of issues and 

challenges companies, institutions, and 

governments face, collaboration with diverse 

individuals is critical for identifying relevant 

solutions and making informed decisions. 

Creativity Creativity encompasses exploring and 

analyzing a wide range of ideas and 

perspectives, generating original and inventive 

solutions, viewing failure as an opportunity to 

learn, and turning ideas into tangible solutions.

The rapid pace of change in the 21st century 

requires rapid adaptation and continual 

innovation. Students will need to know how to 

create and innovate to successfully address 

workforce and social challenges. 
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Computational Thinking

Critical thinking is the ability to reason effectively, use systems thinking, make judgments and 
decisions, and solve problems. Computational thinking, a problem-solving approach often used 
by computer scientists, is synonymous with critical thinking (Noonoo, 2019). In our data-driven 
age, managing information effectively and efficiently using technologies is important (Shute, Sun 
& Asbell-Clarke, 2017). Individuals who possess critical- and computational-thinking skills, and are 
engaged in the workforce, increase their country’s competitiveness in the global economy.

Several definitions have been proposed for computational thinking, but an exact definition remains 
vague (Barr et al., 2011; Grover & Pea, 2013). Some researchers explicitly linked computational 
thinking to programming skills, defining computational thinking as “…students using computers 
to model their ideas and develop programs” (Israel et al., 2015, p. 264). Understanding what 
computational thinking is not can help clarify what it is. For example, coding or programming skills, 
by themselves, are too limiting a representation of computational thinking (Shute et al., 2017). 

Computational thinking stems from the constructivist work of Seymour Papert (1980, 1991), and 
was coined a term by Jeannette Wing (2006). Wing’s seminal article provided a connection 
between humans and computers, and her definition is the most widely used. She explained that 
computational thinking involves “solving problems, designing systems, and understanding human 
behavior, by drawing on the concepts fundamental to computer science” (Wing, 2006, p. 33). She 
clarified that computational thinking is not synonymous with thinking like a computer; rather, it 
involves being engaged in cognitive processes as one is solving problems creatively and efficiently. 

Other definitions of computational thinking exist, and they vary in how computational thinking 
is operationalized. In the context of K–12 education, the International Society for Technology in 
Education (ISTE) and the Computer Science Teachers Association (CSTE) collaborated with the 
education community to develop an operational definition that would resonate with educators. 
They defined computational thinking as a problem-solving process that includes the following 
attributes: 

 ● “Formulating problems in a way that enables us to use a computer and other tools to  
help solve them, 

 ● Logically organizing and analyzing data,

 ● Representing data through abstractions, such as models and simulations, 

 ● Automating solutions through algorithmic thinking (a series of ordered steps), 

 ● Identifying, analyzing, and implementing possible solutions with the goal of achieving  
the most efficient and effective combination of steps and resources, and 

 ● Generalizing and transferring this problem-solving process to a wide variety of problems”  
(Barr et al., 2011, p. 21). 
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Creative Problem Solving 

Creative problem solving is closely associated with computational thinking. Research has suggested 
that there are many similarities between computational thinking and creative problem solving 
(Labusch et al., 2019). Applying computational-thinking practices helps students develop problem-
solving and creative-thinking skills that are needed to formulate and solve real-world problems in a 
digital era (Kong, 2019). 

Creative problem-solving skills are developed as one is confronted with a barrier, and is then 
motivated to apply requisite skills, knowledge, and understanding to seek and explore feasible 
solutions (Hatch, 1988; Labusch et al., 2019). As with computational thinking, the creative-problem-
solving process is often described as having seven stages: 

 ● “Recognize or identify the problem, 

 ● Define and represent the problem mentally, 

 ● Develop a solution strategy, 

 ● Organize his or her knowledge about the problem,

 ● Allocate mental and physical resources for solving the problem,

 ● Monitor his or her progress toward the goal, and (g) evaluate the solution for accuracy”  
(Pretz et al., 2003, p. 3–4). 

Problems vary in scope, but when one is engaged in ill-structured problems, they operate at high 
levels of thinking and reasoning in order to find creative solutions.

Therefore, creative thinking is a critical component of problem solving. Creativity is ignited at 
the beginning of the problem-solving process. Originality and task appropriateness must be 
exhibited simultaneously (Patston et al., 2021) as the problem is formulated and a solution is found. 
Recognizing and identifying a problem is important, because how a problem is solved depends on 
the actual problem (Labusch et al., 2019). Kong (2019) postulated that “problem formulation” should 
be a component of computational thinking practices because formulating a problem is often more 
vital than its solution. According to Kong, students demonstrate their creativity as they raise new 
questions and possibilities in the process of formulating problems. 

Creativity is utilized throughout the computational-thinking process. As solutions are 
creatively explored, automation is applied to achieve efficiency and effectiveness. Identifying 
and implementing the most efficient solution increases the likelihood of the solution being 
generalized and transferred to other real-world problems. Ultimately, a goal of computational-
thinking practices is to develop creative problem solvers. 
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Part 2

Computational and Creative Thinking in Computer Science

Correspondingly, an aim of computer-science education is to develop students’ ability to engage 
in computational thinking and creative problem solving (Burbaite et al., 2018). Cognitive processes 
involved in computational thinking are integral to computer-science concepts and approaches. 
Computational-thinking elements most referenced in computer science are decomposition, 
abstraction, algorithms, and debugging (Shute et al., 2017). Decomposition involves breaking 
down a problem into manageable units. Abstraction entails modeling the main facets of complex 
problems. Algorithms refer to the design of logical and ordered instructions that are used to 
execute a solution to a problem. Debugging occurs when a solution does not function as it should; 
the process involves detecting and fixing errors. These cognitive processes are closely related to 
fundamental programming concepts used in the field of computer science.

Computer Science Curricula: Programming, Robotics, and Game Design

The curricula presented in programming, robotics, and game design each emphasize different 
elements of computational thinking, and therefore can be utilized to foster computational thinking 
(Shute et al., 2017) as well as creative problem solving. Programming is often used to promote 
computational-thinking skills and creative problem solving because writing and using efficient 
programs entails abstraction, generalization, and debugging. Students apply these processes by 
determining a goal to achieve, identifying sub-goals and steps to achieve their goal, and proposing 
efficient solutions. The programming code is meant to be reused to solve similar problems, with 
minor adjustments. Also, debugging is necessary to test the accuracy and efficiency of the 
program. The acquisition of programming concepts and practices through programming is 
considered as the most effective way to learn computational thinking (Kong, 2019). 

Computational thinking is also used in robotics education. Students identify a problem for the 
robot, decompose the problem into sub-goals, and develop algorithms as a set of instructions for 
the robot to follow (Shute et al., 2017). Debugging is used in robotics to iteratively test and make 
changes as needed, skills that also utilize creativity and critical thinking. 

Lastly, game design and gameplay require important components of computational thinking, 
such as problem decomposition, debugging, generalization, and iteration (Shute et al., 2017). In 
game design, players have various goals to achieve and need to develop solution plans. Plans 
are systematically tested to arrive at the most effective strategy to overcome the challenges in 
the game. Strategies previously used can be adopted to solve new problems, a process that can 
leverage each of the Four Cs of STEM.
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Instructional and Learning Strategies

It is important to consider impactful instructional strategies that can guide students’ computer-science 
learning. Additionally, educators should make a concerted effort to integrate computational thinking 
and creative problem solving as part of the computer-science curriculum (Stephenson & Malyn-
Smith, 2016), as this has the potential to positively influence student engagement and motivation. 
This can be done by informing students about the various skills they utilize as they work on problems; 
integrating class discussions on computational thinking and creative problem solving to highlight how 
they can impact all areas of students’ future studies, careers, and lives; and acknowledging progress 
and providing feedback to help students understand why they are developing these skills. Next, we 
briefly summarize three instructional strategies that can be integrated into K–12 curricula. First, 
computational-thinking approaches can be inserted in existing curriculum. 

Lye & Koh (2014) proposed a constructionism-based problem-solving learning environment as 
students engage in computer-science programming activities. This framework contains the 
following elements: (a) an authentic problem to solve that is relevant to the learner (e.g., a game, 
a digital story); (b) information-processing activities (e.g., metaphor, cognitive conflict, mind 
mapping) to help students better grasp complex computing concepts; (c) scaffolded program 
construction by the teacher (e.g., the program broken down into mini-programs to make the task 
more manageable); and (d) reflection (e.g., self-reflection or peer reviewing).  
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In practice, computer-science instructional programs integrate this framework when students 
are given authentic tasks to perform, such as moving an object forward or moving it around an 
obstacle. Students are supported in learning when they are given tools to complete the tasks, 
including coding blocks that can be combined to complete the specified tasks. When students 
have completed an initial task, they can continue to learn as they complete a series of mini-tasks, 
which take them through initial movement to object avoidance and to looping programming. 
After students have practiced sequencing specific coding skills, they can then apply learning in 
competitions that allow them to receive feedback on their coding and to reflect on how to increase 
efficiency in their work. Iterating on these activities, learning and practicing coding, completing 
a sequence of mini-tasks for more complex programming, and then testing programming in a 
competitive environment exposes students to iterative design processes so integral to computer 
science. The learning environment, then, is designed to foster computational practices and 
perspectives.

Students are supported in learning when they are given 
tools to complete the tasks, including coding blocks that can 

be combined to complete the specified tasks.

Second, CT content can be presented using various approaches. Instructional software can 
be used to deliver instruction with a linear approach (Israel et al., 2015), where learning styles 
are assumed to be homogenous and all students are presented with the same instruction and 
problem-solving activities. Linear approaches include well-scaffolded instructional content that 
presents concepts repeatedly, with increasing complexity. For example, if students are learning to 
sequence actions, they might start with a simple task requiring them to select code for a specified 
sequence, code the entire sequence, check their work, fix errors, and then independently create 
code from scratch for a similar situation using skills learned in the initial lesson. Then, in subsequent 
lessons, the complexity of the sequencing requirements can increase, supporting students in 
acquiring skills that build sequentially.    

Alternatively, open-inquiry activities can be applied as students and teachers use programming 
software for instructional purposes. With instructional software, students may be given project 
assignments that include suggested research topics and supporting documentation necessary for 
completing the project. With project briefs, students are required to define the problem, research 
possible solutions, implement solutions, and then test and submit their work for evaluation. 
Integrating open-inquiry projects with computer-science instruction allows students to create their 
own unique projects and use iterative testing strategies to develop the most effective solutions. 
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However, digital tools are not necessarily required to teach computational thinking. For 
example, Kim et al. (2013) created a paper-and-pencil programming strategy for non-computer-
science majors. In classrooms, teachers can use printable worksheets as scaffolds for learning 
computational thinking. For example, if students are assigned an open-inquiry project, they can be 
given brainstorming, filtering, or decomposition worksheets or organizers to guide them in applying 
computational thinking.  

Lastly, teachers can integrate computational thinking with project- and problem-based learning 
methods. These methods can be used to encourage students to take responsibility for their 
learning process. Students become researchers, asking important questions as they design and 
conduct investigations, collect and analyze data, and apply what they learned to new situations 
(English & Kitsantas, 2013). Structured projects or problem-based learning include well-defined 
goals and measures of success. These are given to students as they begin project- or problem-
based learning activities. Unlike in open-inquiry approaches, projects and problems are defined 
in terms of what students will produce. When implemented in classrooms, the use of project- or 
problem-based learning encourages iterative approaches, incremental improvements to design, 
experimentation, and a growth mindset through a safe-to-fail approach. Further, decomposition, 
abstraction, brainstorming, and other supporting worksheets and tools can be provided to 
students, to encourage and support the explicit use of computational skills until they become 
implicit, internalized knowledge and practices.
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Conclusion
The human mind is the most powerful problem-solving tool, but extending that power with computers 
and other digital tools has become an essential part of our daily life (Barr et al., 2011). Although 
students apply many elements of computational thinking in a variety of disciplines, it is important to 
systematically integrate opportunities to apply computational thinking into K–12 computer-science 
curricula. Applying some approaches discussed in this paper, such as open-inquiry activities and 
project- or problem-based learning methods, can help educational institutions better meet the 
demand for computer-science classes over the next decade. Accordingly, students will learn the 
complete set of computational-thinking skills and dispositions, and reap the full benefits that can 
have future societal and economic implications.

The human mind is the most powerful problem-solving 
tool, but extending that power with computers and other 
digital tools has become an essential part of our daily life

(Barr et al., 2011)
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